4736 Decision Mathematics 1

1	(i)	5 2 4 3 8 Bin 1: 5 2 3 Bin 2: 4 Bin 3: 8	M1 A1	First bin correct All correct in three bins	[2]
	(ii)	Bin 1: 8 2 Bin 2: 5 4 Bin 3: 3	M1 A1	First bin correct All correct in three bins	[2]
	(iii)	The heaviest box is originally at the bottom of the stack	B1	Referring to the physical act of sorting the weights into decreasing order	[1]
	(iv)	Bins in any order and boxes in any order Bin 1: 8 or 8 Bin 2: 5 3 5 2 Bin 3: 4 2 4 3	B1	Any valid packing into three bins of capacity 8 kg.	[1]
				Total =	6

7 8 9 4 moves B1 Stating 4 [3] (ii) Neither It has four odd nodes The nodes 2, 4, 6, 8 each have three arcs joined to them whereas an Eulerian graph has no odd nodes and a semi-Eulerian graph has exactly two odd nodes However, just defining Eulerian and semi-Eulerian, without reference to this graph, is not enough [2]	2	(i)	1 2 3 4 5 6	M1 A1	A connected graph with nine vertices labelled 1 to 9 Correct graph	
It has four odd nodes A1 A correct reference to the number of odd nodes for this graph. Be careful about whether 'odd' refers to the parity or the value. The nodes 2, 4, 6, 8 each have three arcs joined to them whereas an Eulerian graph has no odd nodes and a semi-Eulerian graph has exactly two odd nodes However, just defining Eulerian and semi-Eulerian, without reference to this graph, is not enough [2]			4 moves			[3]
The nodes 2, 4, 6, 8 each have three arcs joined to them whereas an Eulerian graph has no odd nodes and a semi-Eulerian graph has exactly two odd nodes However, just defining Eulerian and semi-Eulerian, without reference to this graph, is not enough [2]		(ii)	Neither	M1		
Total = 5			The nodes 2, 4, 6, 8 each have three arcs joined to them whereas an Eulerian graph has no odd nodes and a semi-Eulerian graph has exactly two odd	A1	nodes for this graph. Be careful about whether 'odd' refers to the parity or the value. However, just defining Eulerian and semi-Eulerian, without reference to this graph, is not enough	

ANSWERED ON INSERT

	(iii)	A-D-C-F-G or $16+18+21+58+$ $A-D-C-F-G-B-E-A$ Upper bound = 274	M1 A1 B1	Using nearest neighbour Correct closed tour listed, not just weights added 274 (cao)	[3]
	(ii)	Delete BG from spanning tree $186 - 46 = 140$ Two shortest arcs from G are BG and EG $140 + 46 + 55 = 241$ Lower bound = 241	B1 M1 A1	Correct working for wrong vertex deleted can score B1, M1, A0 Weight of MST on reduced network (ft from part (i) Adding two shortest arcs to MST 241 (cao)	[3]
		BC = 35 $BG = 46$ $AB = 50$ $EG = 55$ $FG = 58$ $AE = 80$ $AF = 100$ Total weight = 186	M1 A1 B1	Drawing a spanning tree for these six vertices Correct (minimum) spanning tree drawn 186 (cao)	[5]
3	(i)	AD = 16 CD = 18 CF = 21 AC = 23 DF = 34 BE = 35	M1 A1	Using Kruskal: Not selecting <i>AC</i> and <i>DF</i> Selecting correct arcs in list, or implied (16+18+21+35+46+50, in this order with no others, can imply M1, A1)	

ANSWERED ON INSERT

			ANSWERED ON INSERT	_
4 (i)	Ja 120 aA	B1	Times for flying route,	
	1		JA = 120 $AG = 80GU = 60$ $UM = 15$ $GM = 80$	
	240/ 5 \ 15		00 - 00 0M - 13 0M - 80	
	\80	B1	Times for train route correct	
	F		JT = 15 $JB = 5$ $BT = 20$	
	300		TP = 300 PU = 20 PM = 30	
	$W \mid V \downarrow P$			
	20 15 10 30 20	B1	Times for coach route and driving route	
	40 80 60			
			$JF = 240 \ FW = 30 \ WU = 20 \ WM = 40$	[3]
	M 15 U			[0]
	Strictly, these are directed arcs, but they are			
	shown as undirected arcs		Follow through their arc weights	
	shown as andirected ares		if reasonable	
	_ 1 0 . 4 120			
	J A 120	M1	Permanent values correct at A, F, B, T	
	120		$\overline{A = 120, F} = 240, B = 5, T = 15$	
	F 6 240 B 2 5 T 3 15			
	240 5 15	M1 d	Both 280 and 275 seen at M	
	3 13		(updating at M)	
	V P	A1 ft	All temporary labels correct (or implied)	
	405 315	111 10	and no extras	
	W 8 G 5 500			
	270 5 200	D.1.0		
	200	B1 ft	All permanent labels correct (or implied)	
			(condone labelling past <i>M</i>)	
	M = 9 = 275 $U = 7 = 260$	B1 ft	Order of labelling correct	
	280 275		(condone labelling past <i>M</i>)	
	Alternatively, if treating as undirected:			
	J, A, F, B and T are unchanged, then			
	th			
	Or $V = 8^{th}$ $V = 9 \mid_{270}$ $P = 1.11 Oth$			
	and $W = 9^{th}$ 405 270 315 280		Marked as above	
	W 8 270 G 7 200			
	270 5 200			
	200			
	10 275			
	M 10 275 U 7 260			
	280 275 260			
	Route: <i>J - A - G - U - M</i>	B1	Correct answer only	[6]

(ii)	The quickest journey time from Jenny's house to the meeting venue	B1	Quickest journey / least travel time or equivalent	[1]	
(iii)	Does not allow for waiting for connections There may be delays at the airport She may not want to fly because of the 'carbon footprint' She may want to choose the cheapest route rather than the quickest route She may not like flying She may want to see her friend She may want to break the journey overnight	B1	Any reasonable suggestion for why she may not want to use the drive/fly/underground route or why she may want to use a different route Any second reasonable suggestion	[2]	

5	(i)	x = area of wall to be panelled (m ²) y = area to be painted z = area to be covered with pinboard	B1 B1	Reference to area or m^2 (at least once) Identifying x as panelling, y as paint and z as pinboard, in any way	[2]
	(ii)	Cost \leq £150 \Rightarrow 8x + 4y + 10z \leq 150 \Rightarrow 4x + 2y + 5z \leq 75 (given)	B1 B1	Use of word 'cost' or equivalent $8x + 4y + 10z \le 150$ seen or explicitly referred to	[2]
	(iii)	(Minimise $P = 15x + 30y + 20z$	B1 ft	Any positive multiple of this eg $3x + 6y + 4z$ or $\frac{1}{4}x + \frac{1}{2}y + \frac{1}{3}z$	[1]
	(iv)	(Minimise $P = 480 + 0.5x + 10y$ Subject to $x + 3y \ge 45$ $x \ge 10$ $y \ge 0$ $x + y \le 22$	B1 ft B1	Any positive multiple of this, eg $2y-x(+c)$ - or maximise a negative multiple Any equivalent simplified form $x \ge 10$ may be implied $y \ge 0$ may be implied $x + y \le 22$, any equivalent simplified form	[3]
	(v)	14	M1 M1	ANSWERED ON GRAPH PAPER $x = 10$ drawn accurately with a sensible scale $x + y = 22$ drawn accurately with a sensible scale	
		12	M1	Their $x + 3y = 45$ drawn accurately with a sensible scale	
		10 12 14	A1 x	Shading correct or identification of the feasible region (triangle with $(10, 11\frac{2}{3})$, $(10, 12)$ and $(10\frac{1}{2}, 11\frac{1}{2})$ as vertices)	[4]
				Total =	12

6	(i)	P x y z s t 1 -25 -14 32 0 0 0 0 6 -4 3 1 0 24 0 5 -3 10 0 1 15	B1 B1	Rows and columns may be in any order Objective row with -25, -14, 32 Constraint rows correct (condone omission of <i>P</i> column)	[2]
	(ii)	x column has a negative value in objective row Cannot use y column since it has negative entries in all the other rows $24 \div 6 = 4$ $15 \div 5 = 3$	B1 B1 B1	'negative in top row', '-25', or similar 'most negative in top row' ⇒ bod B1 Correct reason for not choosing <i>y</i> column Both divisions seen and correct choice made (or both divisions seen and correct choice implied from pivoting)	[3]
	(iii)	Least non-negative ratio is 3, so pivot on 5 1 0 -29 82 0 5 75 0 0 -0.4 -9 1 -1.2 6 0 1 -0.6 2 0 0.2 3 New row $3 = \frac{1}{5}$ row 3 New row $1 = \text{row } 1 + 25 \times \text{new row } 3$ oe New row $2 = \text{row } 2 - 6 \times \text{new row } 3$ oe $x = 3, y = 0, z = 0$ $y = 75$	M1 A1 B1 B1 B1 ft B1 ft	Follow through their sensible tableau (with two slack variable columns) and pivot Pivot row correct (no numerical errors) Other rows correct (no numerical errors) Calculation for pivot row Calculation for objective row Calculation for other row x, y and z from their tableau	[2] [3] [2]
	(iv)	Problem is unbounded No limit to how big <i>y</i> (and hence <i>P</i>) can be Only negative in objective row is <i>y</i> column, but all entries in this column are negative	B1	P from their tableau, provided $P \ge 0$ Any one of these, or equivalent. If described in terms of pivot choices, must be complete and convincing Total =	[1]

		$F = N \div A$ $G = INT$ $H = B \times A$ $C = N - A$ $N = G$	(F) G					For reference only	
7	(i)	F	G	Н	С	N	M1	A reasonable attempt at first pass (presented in any form)	
		2.5	2	4	1	2	A1 A1	F = 2.5 and $G = 2H = 4$ (or double their G value)	
		1	1	2	0	1	A1	and $C = 5$ – their H F, G, H, C and N correct for second pass	
		0.5	0	0	1	0	A1	(ft their N value) F, G, H, C and N correct for third pass (ft their N value)	[5]
	(ii)	F -2.5 -1.5	<i>G</i> -3 -2	<i>H</i> -6 -4	C 1 1	N -3 -2	M1 M1 d	A reasonable attempt First pass correct (or implied)	
		-1 -0.5 -0.5	-1 -1 -1	-2 -2 -2	0 1 1	-1 -1 -1	A1	Reaching two lines with the same value for G	
								If described in words only, then M1 for a correct statement; M1 d for all correct statements (sufficient to guarantee result), and A1 for convincingly correct explanation of how they know these to be true and why the result follows	
		Does not	t termina	te			B1	Saying 'does not stop', or equivalent	[4]
	(iii)	F 3.7 0.3	<i>G</i> 3 0	Н 30 0	<i>C</i> 7 3	N 3 0	M1 A1	First pass correct All correct	
		second v	alue is th	the units ne tens dig t, and so	git, the th	V, the hird value is	M1 A1	Outputs are digits of <i>N</i> In reverse order	[4]
	1	l						Total =	13